Videos of Past Q-FARM Seminars
Q-FARM Seminars are available on our YouTube channel, Q-FARM Stanford. Subscribe to receive notification of new recordings. Please note: not all seminars are recorded.
Phase diagrams and universality classes of observer driven phase transitions
Abstract:
We will discuss the structure and universal nature of measurement and control (or feedback) induced phase transitions in monitored random quantum circuits. First, the properties of the underlying conformal field theory at the measurement induced transition are studied allowing us to identify 3 distinct universality classes, depending on the quantum nature of the gates. Second, using post selection and feedback we identify a control induced phase transition that is concomitant with an entanglement transition but lies in a diffusive, and hence distinct, universality class. Importantly, this transition is witnessed in quantities that are linear in the density matrix and therefore are experimentally accessible without exponentially large (in the number of qubits) resources. Last, we show how to “pull apart” the control and measurement driven transitions, which allows us to discuss the general structure of phase diagrams of observer driven transitions.
Research interests: condensed matter physics, statistical physics, AMO, and quantum computing.
Talk Title: Ultracold Molecular Arrays for Quantum Science
Abstract:
Ultracold polar molecules, with their rich internal structure and tunable long-range interactions, have long been proposed as a platform for quantum science. In particular, arrays of molecules individually trapped in optical tweezers promise to be a new and rich platform for quantum simulation and quantum information processing, since these arrays offer microscopic detection and control that is often desirable and sometimes necessary. In this talk, I will report on several recent advances from our group on the quantum control of laser-cooled molecules held in programmable optical tweezer arrays, and discuss how they establish the building blocks for a new quantum science platform. In particular, our advances include creating defect-free molecular arrays, observing coherent interactions between molecules, and deterministically entangling molecules for the first time. I will also briefly talk about our recent work towards full quantum control of laser-cooled molecules including their motional degrees of freedom. Specifically, I will report our work on implementing Raman sideband cooling in molecules for the first time and discuss how it provides a pathway towards low-entropy molecular ensembles through laser-cooling. If time permits, I will briefly report our recent work on the first demonstration of erasure error conversion and detection in molecules, which is important in the near-term for initializing molecule arrays with high fidelity and in the longer-term for exploring measurement and feedback in quantum systems.
Talk Title: QUANTUM INFORMATION AND QUANTUM FOUNDATIONS WITH HIGH-SPIN DONORS IN SILICON
Abstract:
There are still many great open questions in modern science, for example (i) how to build a large-scale quantum computer, (ii) how to understand the transition from quantum to classical behaviour, and (iii) reconciling quantum mechanics with general relativity. In this seminar, I will show what contributions can be given to these diverse fields by designing and operating silicon nanoscale devices that contain ion-implanted donor atoms, especially when they host a high-spin nucleus.
In quantum information science, the electron [1] and nuclear [2] spins of 31P donors in silicon represent some of the most performant qubits in the solid state, with exceptionally long coherence times [3], and 1- and 2-qubit gate fidelities exceeding 99% [4]. Great progress is being made to demonstrate robust scale-up strategies for such platform, including the development of deterministic single-ion implantation [5].
Moving to heavier donors such as 123Sb provides a larger Hilbert space (8 dimension in the nucleus alone, 16 when including the electron [6]) that can be used to encode logical qubits [7]. I will present fresh experimental data on creating and manipulating “Schroedinger cat” states [8] of the 123Sb nucleus [8], demonstrating the ability to perform the full range of SU(2) and SU(8) operations on the system.
The higher complexity, and the presence of an electric quadrupole interaction with the nucleus, opens the door to explorations of quantum chaos [9] and other fundamental questions in quantum mechanics.
The nuclear spin of 123Sb donors also couples to mechanical strain [10]. This can be exploited to design devices containing piezoelectric materials to coherently drive nuclear acoustic resonance [11]. Taken to the extreme, one can envisage reaching the strong-coupling regime between a single 123Sb nuclear spin and a macroscopic mechanical oscillator, with potential applications to the study of the quantum-classical transition caused by gravitational effects [12].
Talk Title: Quantum Computing with Trapped Ions
Abstract: Trapped atomic ions provide an ideal physical platform to build quantum computers and networks. Over the past decade or so, there has been substantial progress in leveraging this system to construct scalable and practical quantum information processors. In this talk, I will discuss the core physics and technical advances that were made that led to trapped ion quantum computers, and the insights that have been gained in designing and constructing robust systems that can potentially lead to scientifically meaningful computations and simulations.
Talk Title: Electron fractionalization under zero magnetic field
Abstract: Electron fractionalization is of significant interest to both fundamental physics and topological quantum computing. The emergence of two-dimensional moiré materials provides a platform to explore the physics of electron fractionalization under zero magnetic field. In this talk, I will discuss two examples of zero-field electron fractionalization in moiré semiconductors: 1) the fractional Chern insulator that spontaneously breaks the time reversal symmetry, and 2) the time reversal symmetric fractional quantum spin Hall insulator.
Talk Title: Towards Few-Photon Ultrafast All-Optical Programmable Photonics
Recent advancements in lithium niobate thin films have enabled rapid progress in the field of nonlinear photonics. The combination of tightly confining waveguides and intense, few-cycle pulses has resulted in nanophotonic devices exhibiting efficient nonlinear frequency conversion at the femtojoule level. In anticipation of ultrafast nonlinear programmable photonic components, device architectures for optimizers and optical quantum resource generation have begun to be envisioned. A key component in these architectures is highly efficient all-optical switches capable of operating on femtosecond time scales. Such devices, as well as the hurdles of scaling nonlinear photonics to the few-photon regime, will be the topic of this talk.
Talk Title: Quantum Mechanics Repainted in a QBist Style
QBism (pronounced cubism) is a foundational program for quantum mechanics premised on the idea that quantum probabilities should be understood as Bayesian probabilities—i.e., quantified degrees of belief or gambling attitudes. Philosophers hate it. “Wah, wah, wah, your quantum states aren’t real; they have to be because my philosophy says so!” What the philosophers have never appreciated (or perhaps cared about) is that this turn in thinking has motivated a significant number of theorems and constructions in quantum information science that might not have been discovered otherwise. In this talk, I will sketch QBism’s most ambitious project yet: Rewriting the quantum formalism so that it wears its Bayesian character on its sleeve. In the process, we will see that it leads to a very deep mathematical question related to Hilbert’s still-unsolved 12th problem and suggests a novel quantum measurement that could have a number of uses in quantum information science (and maybe metrology).
Talk Title: "Phase-control routes to topological superconductivity"
This talk will present recent experiments demonstrating routes to topological superconductivity in semiconductor-superconductor hybrids that take advantage of phase control. The first instance is in a cylindrical geometry, the transition shows up as even versus odd Caroli-deGennes-Matricon states. In a planar geometry, zero-bias features appear across a long Josephson junction subject to phase bias. Extension beyond present experiments will be considered as well.
Research Interests: Condensed Matter Experiment, Hybrid superconductor-semiconductor materials, Topological superconductivity, Quantum Chaos, Mesoscopic Physics
Talk Title: "The Quantum Age: From Bell Pairs to Quantum Computers"
Quantum mechanics has not one but two mysteries: the double-slit experiment and quantum correlations (entanglement) between two or more particles. Criticized by Einstein as “spooky action at a distance”, entanglement is now seen as an essential part of the physical world. The Bell inequalities, introduced to experimentally distinguish local hidden variable theories from quantum physics, have been confirmed to agree with quantum mechanics in many experiments. Building on entangled Bell pairs, the last few years have seen a remarkable development in our ability to control many neutral atoms individually, and induce controlled interactions between them on demand. This progress ushers in a new era where one can create highly entangled states of many particles, break certain limits for quantum sensors, or study quantum phase transitions. I will present results on quantum simulation with atomic arrays containing more than 250 atoms. Finally, I will discuss prospects for near- and medium-term neutral-atom quantum computers with full quantum error correction.
Talk Title: "Quantum control of atomic and molecular ions"
Control over the quantum states of trapped atomic and molecular ions has steadily improved over the last 30 years and is leveraged towards more precise clocks, more powerful quantum information processors and greatly improved control over the quantum states of highly charged ions and molecular ions. In this talk, systems incorporating several different ion species will be highlighted. This approach has yielded some of the highest performance demonstrations of quantum information processing (QIP) to date and may be scalable to millions of qubits. At NIST we are advancing QIP by controlling ion qubits with radiofrequency and microwave fields and integrating optics and detectors directly into microfabricated ion traps. While a full-scale fault-tolerant quantum information processor is still elusive, quantum logic can connect atomic ions to molecular ions, which allows us to prepare single molecules in pure quantum states, coherently manipulate them and read out their final quantum states. In this way we can interrogate a single molecule with precise control over and full resolution of its rotational and vibrational degrees of freedom. I will discuss the proof-of-principle demonstrations at NIST and their potential for unprecedented control and spectroscopic studies of a wide class of single molecular ions. Research interests: Quantum science with trapped atomic and molecular ions
Talk Title: "Recent Developments in Quantum Money"
Quantum money is a form of currency where the inability to counterfeit is derived from the no-cloning principle of quantum mechanics. An important feature of quantum money is public verification, allowing anyone to verify banknotes while still ensuring that only the mint can create new notes. Unfortunately, convincing realizations of publicly verifiable quantum money have remained elusive. In this talk, I will survey the literature on quantum money, explain what makes public verification so difficult, and describe some very recent progress toward overcoming these challenges.
Krishna: "Why the buzz around quantum LDPC codes?"; Rakovszky: "Gauge dualities for (good) LDPC codes"
Ani Krishna: Quantum LDPC codes have attracted a lot of attention recently. In this talk, I will discuss why these codes are being studied from the perspective of fault-tolerant quantum computation. I will first discuss asymptotic guarantees—we expect that these codes will offer an efficient way to construct scalable quantum computers. This efficiency might not be available to all architectures—I shall discuss what your architecture needs to be able to do for you to be able to build these codes. I will then discuss some desiderata to translate asymptotic results to real-world applications.
Research interests: Quantum error correction and fault-tolerant quantum computation.
Tibor Rakovszky: This talk will discuss various recent ideas and constructions in (quantum) computer science from a physics perspective. I will introduce quantum LDPC codes, examples of which include the familiar toric code, fracton models, and more exotic systems that live on so-called expander graphs, and explain how all of these can be understood as generalized versions of Z2 gauge theories, familiar from high energy and condensed matter physics. I will use this perspective to relate properties of quantum and classical codes, using a form of generalized gauge duality; in particular to explore the relationship between the code distance of the quantum code and a property of classical codes called "local testability", which can be understood in terms of the scaling of energy barriers. Along the way, I will introduce various product constructions that can be used to systematically generate new models with interesting properties out of simpler ones.
Research interests: condensed matter theory, quantum many-body dynamics and (more recently) quantum error correction.
"Learning global charges from local measurements"
Monitored random quantum circuits (MRCs) exhibit a measurement-induced phase transition between area-law and volume-law entanglement scaling. In this talk, I will review the physics of such entanglement transitions, and argue that MRCs with a conserved charge additionally exhibit two distinct volume-law entangled phases that cannot be characterized by equilibrium notions of symmetry-breaking or topological order, but rather by the non-equilibrium dynamics and steady-state distribution of charge fluctuations. These include a charge-fuzzy phase in which charge information is rapidly scrambled leading to slowly decaying spatial fluctuations of charge in the steady state, and a charge-sharp phase in which measurements collapse quantum fluctuations of charge without destroying the volume-law entanglement of neutral degrees of freedom. I will present some statistical mechanics description of such charge-sharpening transitions, and relate them to the efficiency of classical decoders to “learn” the global charge of quantum systems from local measurements.
"Arrays of Individually-Controlled Molecules for Quantum Science"
Advances in quantum manipulation of molecules bring unique opportunities: the use of molecules to search for new physics; exploring chemical reactions in the ultra-low temperature regime; and harnessing molecular resources for quantum simulation and computation. I will introduce our approaches to building individual ultracold molecules in optical tweezer arrays with full quantum state control. This work expands the usual paradigm of chemical reactions that proceed via stochastic encounters between reactants, to a single controlled reaction of exactly two atoms. The new technique allows us to isolate two molecular rotational states as two-level systems for qubits. In order to preserve coherence of the qubits, we develop magic-ellipticity polarization trapping. Finally, we are taking advantage of the resonant dipolar interaction of molecules to entangle them with single site addressability. In combination, these ingredients will allow the molecular quantum system to be fully programmable.
Quantum Walks on Hierarchical Graphs
There are few known exponential speedups for quantum algorithms and these tend to fall into even fewer families. One speedup that has mostly resisted generalization is the use of quantum walks to traverse the welded-tree graph, due to Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman. We show how to generalize this to a large class of hierarchical graphs in which the vertices are grouped into a d-dimensional lattice of "supervertices". Supervertices can have different sizes, and edges between supervertices correspond to random connections between their constituent vertices. The hitting times of quantum walks on these graphs is mapped to the localization properties of zero modes in certain disordered tight binding Hamiltonians. The speedups range from superpolynomial to exponential, depending on the underlying dimension and the random graph model.
"Why can’t we classically describe quantum systems?"
A central goal of physics is to understand the low-energy solutions of quantum interactions between particles. This talk will focus on the complexity of describing low-energy solutions; I will show that we can construct quantum systems for which the low-energy solutions are highly complex and unlikely to exhibit succinct classical descriptions. I will discuss the implications these results have for robust entanglement at constant temperature and the quantum PCP conjecture. En route, I will discuss our [Anshu, Breuckmann, and Nirkhe] positive resolution of the No Low-energy Trivial States (NLTS) conjecture on the existence of robust complex entanglement.
Mathematically, for an n-particle system, the low-energy states are the eigenvectors corresponding to small eigenvalues of an exp(n)-sized matrix called the Hamiltonian, which describes the interactions between the particles. Low-energy states are the quantum generalizations of approximate solutions to satisfiability problems such as 3-SAT. In this talk, I will discuss the theoretical computer science techniques used to prove circuit lower bounds for all low-energy states. This morally demonstrates the existence of Hamiltonian systems whose entire low-energy subspace is robustly entangled. I will also discuss stronger separations between ground-states of local Hamiltonians and the set of classically describable quantum states; these separations are provable [Natarajan and Nirkhe] in the distribution-testing oracle model.
Research Interests: Chinmay Nirkhe’s research interests are in theoretical computer science centered around quantum information and hardness of approximation. He is currently interesting in studying the quantum PCP conjecture and the complexity of quantum states.
Quantum simulation – Engineering & understanding quantum systems atomby- atom
The computational resources required to describe the full state of a quantum many-body system scale exponentially with the number of constituents. This severely limits our ability to explore and understand the fascinating phenomena of quantum systems using classical algorithms. Quantum simulation offers a potential route to overcome these limitations. The idea is to build a well-controlled quantum system in the lab, which represents the problem of interest and whose properties can be studied by performing measurements. In this talk I will introduce quantum simulators based on neutral atoms that are confined in optical arrays using laser beams. State-of-the-art experiments now generate arrays of several thousand particles, while maintaining control on the level of single atoms. I will show how these systems can be used to study the properties of topological phases of matter. In the end I will provide a brief outlook on new directions in the field based on the unique properties of alkaline-earth(-like) atoms.
Research Interests: Ultracold Atoms in Optical Lattices, Topology, Out-of-equilibrium dynamics, Lattice Gauge Theories
“Quantum many-body physics with ultracold molecules”
A central challenge of modern physics is understanding the behavior of strongly correlated matter. Current knowledge of such systems is limited on multiple fronts: experimentally, these materials are often difficult to fabricate in laboratory settings, and numerical simulations become intractable as the number of particles approaches meaningful values. In the spirit of Feynman, physicists can model diverse phenomena, from high-temperature superconductivity to quantum spin liquids, using analog quantum simulation. My research explores emergent quantum phenomena in pristine systems made of atoms, molecules, and electromagnetic fields. In particular, ultracold molecules are a promising platform due to their tunable long-range interactions and large set of internal states. However, this nascent platform requires new experimental techniques to create, control, and probe molecular systems.
“Time-of-Flight Quantum Tomography of an Atom in an Optical Tweezer”
I will discuss experiments with atoms in optical tweezers in which we use time-of-flight imaging to demonstrate full tomography of a non-classical motional state. By combining time-of-flight imaging with coherent evolution of an atom in the optical tweezer, we are able to access arbitrary quadratures in phase space without relying on coupling to a spin degree of freedom. To create non-classical motional states, we using tunneling in the potential landscape of optical tweezers, and our tomography both demonstrates Wigner function negativity and assesses coherence of non-stationary states. We are motivated to explore this tomography method for its applicability to other neutral particles, such as large-mass dielectric spheres. I will also provide a brief description of our broader optical tweezer work focused on studying light-assisted collisions and on extending atom lifetimes with a new cryogenic optical tweezer array apparatus.
“Measurement induced criticality in many-body states”
A strange aspect of quantum mechanics is what Einstein called “spooky action at a distance”: measuring the spin of one particle of an EPR pair leads to wavefunction collapse that instantaneously changes the correlation between the two particles regardless of how far they are separated. In this talk I will discuss how this effect is generalized to entangled states of many particles. In particular I will show that local measurements of a critical quantum ground state can induce a phase transition that instantaneously modifies the power-law decay of correlations at arbitrary long distances. I will explain how this transition can be analyzed through a mapping to a statistical field theory with boundary criticality and discuss a realistic scheme for observing these phenomena in experiments.
Talk title: “Theory of learning in the quantum universe”
I will present recent progress in building a rigorous theory for understanding how scientists, machines, and future quantum computers could learn models of our inherently quantum universe. The talk will include mathematical results answering two fundamental questions at the intersection of machine learning and quantum physics: Can classical machines learn to solve challenging problems in quantum physics? Can quantum machines learn exponentially faster than classical machines?
“Quantum science with microscopically-controlled arrays of alkaline-earth atoms”
Quantum science with neutral atoms has seen great advances in the past two decades. Many of these advances follow from the development of new techniques for cooling, trapping, and controlling atomic samples. In this talk, I will describe ongoing work where we have explored a new type of atom - alkaline-earth(-like) atoms - for optical tweezer trapping, a technology which allows microscopic control of arrays of 100s to potentially 1000s of atoms. While their increased complexity leads to challenges, alkaline-earth atoms offer new scientific opportunities by virtue of their rich internal degrees of freedom. Combining features of these atoms with tweezer-based control has impacted multiple areas in quantum science, including quantum information processing, quantum simulation, and quantum metrology.
"Negative energy, wormholes, and cosmology"
We discuss a framework for cosmological physics where the cosmological observables are related by analytic continuation to vacuum observables in a static asymptotically AdS Lorentzian wormhole geometry. The existence of these wormhole solutions appears to require states for quantum field theories on bounded regions with extremely large Casimir energies compared with those for standard boundary conditions. To check whether such states exist, we study free Dirac fermions on a bounded region via a lattice regularization, and find numerical evidence that for 3+1 dimensional Dirac fermions on a region of fixed size, there are states with uniform negative energy density of arbitrarily large magnitude.
“Scalable approaches for ion trap quantum computing”
Quantum computing requires implementation of high fidelity control operations across an interconnected array of qubit systems. The requirements of quantum error correction put stringent limits on tolerable errors as well as introducing a larger overhead in the number of qubits. In this talk I will describe two approaches to the challenges of scaling trapped-ion quantum computers. The first is in the optical delivery, where we have recently demonstrated the first multi-qubit gates between ions using light delivered from trap-integrated waveguides. In further work, we have been investigating further possibilities arising from this technology, including the use of optical standing waves generated on-chip and protocols for entanglement generation. A second generation of photonic chips recently ordered from the foundry features modifications for blue light, tightly focused laser beams and better ion performance. I will then outline a new approach to implementing large scale quantum computing with trapped-ions based on micro fabricated Penning traps, also giving an insight into the physics of these systems and their advantages for scaling up.
"Dissipative crystals of matter and light - from self-oscillating pumps to dissipation-stabilized phases"
The time evolution of a driven quantum system can be strongly affected by dissipation. Although this mainly implies that the system relaxes to a steady state, in some cases it can lead to the appearance of new phases and trigger emergent dynamics. I will report on experiments where we dispersively couple a quantum gas to an optical cavity. When the dissipation via cavity losses and the coherent timescales are comparable, we find a regime of persistent oscillations leading to a topological pumping of the atoms. Furthermore, I will report on the observation of a dissipation-stabilized phase in a system with tunable decay.
"Measuring the higher-order phonon-phonon coherences in a superfluid optomechanical device"
I will describe measurements in which we detect the individual sideband photons produced by an optomechanical device consisting of a nanogram of superfluid helium confined in a cavity. We use the photon-counting data to probe the phonon-phonon correlations (up to fourth order) in a single acoustic mode of the superfluid. The data is consistent with the acoustic mode being in a thermal state with mean phonon number ~ 1. We also use sideband-photon counting to show that the acoustic mode can be driven to a coherent amplitude corresponding to tens of thousands of phonons without harming the state's purity. I will discuss applying these results to testing models of discrete spacetime, and to distributing entanglement over kilometer-scale optical fiber networks
Non Markovian open quantum systems: Theoretical description and simulatability
Quantum systems arising in solid state physics, chemistry and biology invariably interact with their environment, and need to me modelled as open systems. While the theory of Markovian open quantum systems has been extensively developed, their non-Markovian generalization remains less well understood. In this talk, I will first review quantum stochastic calculus which provides a mathematically rigorous description of a unitary group generating Markovian sub-system dynamics.
Tutorial: Search for Non-Abelian Majorana particles as a route to topological quantum computation
Majorana zero modes are fermion-like excitations that were originally proposed in particle physics by Ettore Majorana and are characterized as being their own anti-particle.
Two Talks
Talk #1: Here we present the realization of optical lattices with sound, using a Bose-Einstein condensate coupled to a confocal optical resonator. Talk #2: Tunable interactions are an essential component of flexible platforms for quantum simulation and computation. While most physical systems rely on local interactions dictated by the...
Emergent quantum randomness and its application for quantum device benchmarking
In this talk, we describe a novel, universal phenomenon that occurs in strongly interacting many-body quantum dynamics beyond the conventional thermalization.
Quantum probes of two-dimensional materials
Spin qubits based on diamond NV centers can detect tiny magnetic fields; thin two-dimensional materials produce tiny magnetic fields. Do they make a good match? I will discuss two works that explored how NV magnetometry can uniquely probe the spins and currents in crystals that are ...
Continuous variables quantum complex networks
Experimental procedures based on optical frequency combs and parametric processes produce quantum states of light involving large numbers of spectro-temporal modes that can be mapped and analyzed in terms of quantum complex networks.
Quantum sensing with unlimited optical bandwidth
Squeezed light is a major resource for quantum sensing, which has been already implemented in high-end interferometric sensing, such as gravitational wave detection. However, standard squeezed interferometry methods suffer from two severe limitations.
Coupling diamond defects to high-finesse optical microcavities
Defect centers in diamond can offer atomic-like optical transitions and long-lived spin degrees of freedom.
Lattice atom interferometry in an optical cavity
Atom interferometers are powerful tools for both measurements in fundamental physics and inertial sensing applications.