Skip to content Skip to navigation

In the News

Present at the inaugural Q-FARM symposium

January 29, 2020 |

Apply to present at the Inaugural Q-FARM Symposium
April 21-22, 2020

Open to Stanford Students and Postdocs. You will have the opportunity to showcase your research to academic and industry leaders in quantum research.

Questions? Contact- lancy@stanford.edu

 

image of accelerator section, magnified 25K

We built a particle accelerator that fits on a chip

Scientists at Stanford and SLAC have created a silicon chip that can accelerate electrons using an infrared laser to deliver, in less than a hair’s width, the sort of energy boost that takes microwaves many feet.

professor Jelena Vučković

IET Harvey Engineering Research Prize to Jelena Vučković

December 10, 2019 | Read full IET Press Release

Professor Jelena Vučković has been awarded the Institution of Engineering and Technology (IET) A F Harvey Engineering Research Prize. She will develop an on-chip integrated pulsed laser, which will revolutionize photonic technology and the applications that require these lasers, such as medicine, optical communications, quantum computing and self-driving cars.

Jelena said: "I am tremendously honored to receive the A F Harvey Prize from the IET, and to be selected among the shortlisted group of very distinguished scientists. This prize will be used to support my lab's work on implementation of miniaturized and inexpensive ultrafast lasers – the greatest challenge of integrated photonics, which could revolutionize many applications, from self-driving cars, to neuroscience and to quantum technologies."

Illustration by Sarah Rieke

Can we develop computer chips that run on light?

Just beyond the horizon of practicality, researchers are trying to develop a new generation of chips that would control photons as reliably as today’s chips control electrons. Jelena Vuckovic has already devoted some 20 years to this pursuit for a simple reason: Photonic chips could become the basis for light-based quantum computers that could, in theory, break codes and solve certain types of problems beyond the capabilities of any electronic computer.

In recent months the Stanford electrical engineer has created a prototype photonic chip made of diamond. Now, however, in experiments described in Nature Photonics, she and her team demonstrate how to make a light-based chip from a material nearly as hard as diamond but far less exotic — silicon carbide.

“These are early stage but promising results with a material that is already familiar to industry,” Vuckovic said.

Call for Proposals!

October 01, 2019 |

QFARM is soliciting proposals for topical workshops in any area of quantum science and engineering. Interested organizers should submit a one page proposal with a tentative budget, timeline, and speakers to qfarm-excom@lists.stanford.edu

 

Postdocs are welcome to submit workshop proposals. Please be sure to include a letter from one or more faculty endorsing your proposal.

image of 2019 Fellowship winners, Yudan and Yihui

PhD Candidates receive Q-FARM Fellowships

Congratulations to Q-FARM 2019 Fellowship Awardees

The inaugural recipients of the 2019 Q-FARM student fellowships are

  • Yudan Guo (Physics) is member of Prof. Benjamin Lev’s research group, LevLab. Yudan's research is centered on many-body cavity QED. 

  • Yihui Quek (Applied Physics) is in Prof. Weissman’s Compression group. Her research areas are quantum Shannon theory and near-term quantum algorithms.

The QFARM student fellowships are awarded to advanced graduate students working in quantum science and engineering. Fellowship criteria are excellence in their research, and demonstrated potential for building new links within the Stanford quantum community. Each of the awardees will receive two years of funding.
Please join us in congratulating PhD candidates Yudan Guo and Yihui Quek.

 

image of Jelena Vuckovic at FiO+LS 2019

Nanophotonic Design, Optimized

September 17, 2019 | Nanophotonic Design, Optimized

Integrated nanophotonics promises a generation of spiffy, miniaturized optical components that could drive new capabilities, in applications from communications to lidar to quantum technology. But getting there requires packing huge optical functionality into a very small footprint—and that has been a formidable challenge in design, fabrication and just plain time.

Stanford physicists discover new quantum trick for graphene: magnetism

July 25, 2019 | Stanford News

Physicists were stunned when two twisted sheets of graphene showed signs of superconductivity. Now Stanford scientists have shown that the wonder material also generates a type of magnetism once only dreamed of theoretically.

Stanford physicists count sound particles with quantum microphone

July 24, 2019 | Stanford News

A device that eavesdrops on the quantum whispers of atoms could form the basis of a new type of quantum computer.

Q&A: SLAC/Stanford researchers prepare for a new quantum revolution

May 09, 2019 | SLAC

Monika Schleier-Smith and Kent Irwin explain how their projects in quantum information science could help us better understand black holes and dark matter.